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Effects of whole-body vibration 
training on physical function, bone 
and muscle mass in adolescents and 
young adults with cerebral palsy
Silmara Gusso1, Craig F Munns2, Patrícia Colle1, José G B Derraik1, Janene B Biggs1, 
Wayne S Cutfield1 & Paul L Hofman1

We performed a clinical trial on the effects of whole-body vibration training (WBVT) on muscle function 
and bone health of adolescents and young adults with cerebral palsy. Forty participants (11.3–20.8 
years) with mild to moderate cerebral palsy (GMFCS II–III) underwent 20-week WBVT on a vibration 
plate for 9 minutes/day 4 times/week at 20 Hz (without controls). Assessments included 6-minute 
walk test, whole-body DXA, lower leg pQCT scans, and muscle function (force plate). Twenty weeks 
of WBVT were associated with increased lean mass in the total body (+770 g; p = 0.0003), trunk 
(+410 g; p = 0.004), and lower limbs (+240 g; p = 0.012). Bone mineral content increased in total body 
(+48 g; p = 0.0001), lumbar spine (+2.7 g; p = 0.0003), and lower limbs (+13 g; p < 0.0001). Similarly, 
bone mineral density increased in total body (+0.008 g/cm2; p = 0.013), lumbar spine (+0.014 g/cm2; 
p = 0.003), and lower limbs (+0.023 g/cm2; p < 0.0001). Participants reduced the time taken to perform 
the chair test, and improved the distance walked in the 6-minute walk test by 11% and 35% for those 
with GMFCS II and III, respectively. WBVT was associated with increases in muscle mass and bone mass 
and density, and improved mobility of adolescents and young adults with cerebral palsy.

Cerebral palsy (CP) encompasses a number of non-progressive encephalopathies of varied aetiology. It usually 
presents at birth or in early infancy, and is the most common cause of physical disability in childhood with a prev-
alence of 2 per 1000 children1. The common features of the condition are impairment in muscle function, reduced 
muscle and bone mass, as well as varying degrees of impaired mobility2.

The reduced bone mass due to abnormal bone development is an adverse consequence that persists into adult 
life2,3. Up to 50% of children with CP will experience a fragility fracture, with an annualized incidence of 7%4. 
While the aetiology of low bone mass and density with increased fracture risk are multifactorial, reduced mus-
cle mass and mobility are important factors3. To date, the management of bone health in CP has focussed on 
treatment of established bone fragility with bisphosphonates, rather than prevention of bone fragility through 
optimisation of physical therapy5–7.

With limited evidence on non-pharmaceutical treatments for CP, the use of whole-body vibration training 
(WBVT) has recently been investigated. Preliminary studies using WBVT in children with reduced mobility 
and/or decreased bone mass were associated with an improvement in both lower limb muscle function and bone 
mass8–11. A recent systematic review and meta-analysis examined the very limited data on this group, which cov-
ered only 6 studies and a total of 176 children12. These studies in children with CP have been relatively small or 
have been carried out on heterogeneous group of participants that makes interpretation of findings difficult. In 
addition, only one study has specifically examined the effects of WBVT as a monotherapy in children with CP12. 
Further, no studies have specifically examined the effects of WBVT on both bone and muscle in adolescents with 
CP. As a result, there is a need for robust data from clinical trials employing WBVT as a possible treatment for CP. 
By maintaining muscle mass and bone mineral accrual during growth, WBVT could maximise mobility and bone 
strength into adult life. Thus, in this clinical trial we aimed to determine the effects of 20 weeks of WBVT on the 
muscle and bone health of adolescents and young adults with mild to moderate CP.
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Methods
Ethics.  Ethics approval was granted by the Northern X Regional Ethics Committee. Written informed consent 
was obtained from all parents or guardians, as well as verbal or written consent from all able participants. This 
study was performed in accordance with all appropriate institutional and international guidelines and regulations 
for medical research, in line with the principles of the Declaration of Helsinki. The trial was registered (5th May 
2011) at the Australian New Zealand Clinical Trials Registry (ACTRN12611000465954).

Participants.  Adolescents and young adults with CP in the Auckland region of New Zealand were recruited 
by contacting the schools that cater for them with appropriate physiotherapy services, as well as via Auckland 
District Health Board and Counties Manukau District Health Board clinics. After establishing contact with fam-
ilies, schools and the respective physiotherapists, parents of potential participants were contacted via telephone, 
and their sons or daughters with CP were invited to the study. All recruited participants had mild to moderate CP, 
i.e. Level II or III disabilities as per the Gross Motor Function Classification System (GMFCS) for CP13. Exclusion 
criteria included having had a fracture within 8 weeks of enrolment, pregnancy, acute thrombosis, muscle or 
tendon inflammation, nephrolithiasis, discopathy, or arthritis. Other exclusion criteria were the use of anabolic 
agents, glucocorticoids (other than asthma inhalers), bisphosphonates or growth hormone. In addition, potential 
participants were also excluded if they displayed cognitive or physical impairment sufficiently severe that would 
hinder fulfilment of study protocol or clinical assessments. Serum 25-hydroxyvitamin D levels were obtained to 
ensure participants were not vitamin D deficient. No participants received botulinum toxin injection during the 
study or in the 3 months preceding its commencement.

Trial design.  The study was originally designed and registered as a randomized controlled trial. However, as 
a result of the likely benefits of WBVT, parents of all potential participants were adamant that they wanted their 
sons/daughters to undergo the actual intervention. Thus, the study was changed to a clinical trial without a con-
trol group, comparing baseline vs post-treatment outcomes within subjects.

Training protocol.  WBVT was performed on the Galileo Basic vibration plate (Novotec Medical, Pforzheim, 
Germany). Each session consisted of three 3-minute bouts of training, with a 3-minute rest between them. 
Sessions were performed four times a week, over a 20-week period. Participants started with sessions of three 
1-minute bouts at 12 Hz, and both intensity and duration were gradually increased according to the response of 
individual participants. However, by the end of week 4, all participants were training at the prescribed protocol 
of 3 sets of 3 minutes at 20 Hz and 1 mm amplitude, four times a week. Majority of participants were training for 
2 minutes at 15 Hz by the end of week 1, for 3 minutes at 16 Hz by week 2, for 3 minutes at 18 Hz by week 3, and 
for 3 minutes at 20 Hz by the end of week 4. Training intensity was maintained at 20 Hz for the remainder of the 
intervention. Participants stood barefoot on the plate with feet apart (position 2–3) and in parallel, with knees 
slightly bent for the duration of training. An adjustable metal frame was used as an aid for those participants who 
had difficulty in standing on the plate over the course of training.

The participants’ hands were mostly free during the training sessions. The frame was used in the beginning of 
the study until participants built up confidence and were able to safely support themselves during the vibration 
training. However, for the few participants with poorer balance (< 10%), the frames were maintained at all times, 
so that it could be used to safely regain balance when necessary.

Training sessions were performed either at school or in the home environment to suit individual families. 
Sessions at school were supervised by a member of our research team, while parents/caregivers supervised home 
sessions. Participants were asked to maintain a training diary to monitor compliance with study protocol. Data 
recorded in the diary included the date, intensity and duration of training, as well as any comments regarding 
adverse events, tiredness, or pain. A research team member also supervised the participants performing training 
at home once a week, in order to monitor progress and provide feedback/support for parents or caregivers.

Clinical assessments.  All clinical assessments were performed at the Maurice and Agnes Paykel Clinical 
Research Unit (Liggins Institute, University of Auckland). Children’s heights were measured using a Harpenden 
stadiometer. Body mass, body composition, and skeletal data were obtained using whole-body dual-energy X-ray 
absorptiometry (DXA, Lunar Prodigy 2000, General Electric, Madison, WI, USA). DXA scans were also per-
formed at the lumbar spine (L1–L4, in anterior-posterior view) and dual femur areas.

In addition, peripheral quantitative computed tomography (pQCT) (Stratec Medizintechnik GmbH, 
Pforzheim, Germany) was used to obtain cross-sectional measurements of tibial bone mass and calf muscle. 
Measurements were obtained at 4%, 20% and 50% sites along the tibia.

Physical function was assessed by the 6-minute walk test14. In brief, participants were asked to walk as fast 
as possible for exactly 6 minutes, with the total distance covered and the time taken to reach individual mile-
stones recorded. Blood pressure and pulse rate were measured in a sitting position at rest prior to the start of 
test and immediately after completion. Blood pressure was measured using a standard mercury sphygmoma-
nometer (Dinamap ProCare 100, GE Healthcare, Freiburg, Germany), with an appropriately-sized cuff on the 
non-dominant arm.

Muscle function was assessed using the Leonardo Mechanography Ground Reaction Force Plate (Novotec 
Medical, Pforzheim, Germany). Assessments included:

•	 the chair rising test – performed with a specially-designed seat (Novotec Medical) placed on the plate, with 
participants standing up and sitting down three times as fast as possible;

•	 single two-leg jump – jumping as high as possible using both legs and landing on the forefoot;
•	 balance test – standing still on the plate for 10 seconds.
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All assessments were performed three times. The first assessment aimed to familiarize the participants with 
the test. The average of the last two assessments was used as the final result.

Participants and their families were asked to report to investigators any adverse events that could possibly be 
associated with the WBVT.

Health-related quality of life.  Health-related quality of life was assessed as per the Cerebral Palsy Quality 
of Life (CP QOL) questionnaire v.3 15. Specific questionnaires are applied to caregivers (89 questions) and par-
ticipants (72 questions) that cover a number of different domains: communication and physical health, feelings 
about functioning, general well-being and participation, pain and impact of disability, school well-being, social 
well-being, as well as access to services and family health (for caregivers only). A global score was obtained by 
averaging all scores for a given individual. Questions were rated on a scale of 1–9 and then transformed into 
scores that ranged from 0 to 100. Data were only included for participants or caregivers who had completed the 
questionnaire both at baseline and at the end of the treatment period.

Statistical analyses.  Associations between demographic parameters and compliance were assessed with 
Pearson’s correlation coefficient or one-way ANOVA. Treatment effects were assessed using random effects mixed 
models with repeated measures, while adjusting for GMFCS level and the baseline value of the outcome response 
(i.e. baseline data were included in the model as covariates). Regression models were also run to evaluate the 
potential effects of compliance, gender, and place of training on treatment outcomes. Data were examined for a 
normal distribution using the Anderson-Darling test, and where necessary, data were log-transformed to approx-
imate normality. Parametric and non-parametric tests were used for certain quality of life parameters with a 
skewed distribution, but as the results were similar, we report just the parametric results. Only observed data 
were used, and there was no imputation of missing values. Univariate analyses were carried out in Minitab v.16 
(Pennsylvania State University, State College, PA, USA) and multivariate analyses in SAS v.9.3 (SAS Institute, 
Cary, NC, USA). All statistical tests were two-tailed and significance level maintained at 5%. Data are expressed 
as means ±  standard errors of the mean.

Results
A total of 40 participants took part in the study, including 34 GMFCS II and 6 GMFCS III. Participants had a 
mean age of 16.2 years (SD =  2.1; range 11.3–20.8 years), comprising 23 males and 17 females. Compliance with 
prescribed study protocol was variable but relatively high overall at 74%; 28% of participants performed more 
than 90% of prescribed sessions, and most (80%) completed ≥ 50%. Note that an uneven number of participants 
completed the individual assessments, and the respective n is provided in Tables 1 and 2.

Post-training, participants displayed increased lean mass at the total body level (+ 770 g (+ 2.1%); p =  0.0003), 
in the trunk (+ 410 g (+ 2.4%); p =  0.004), and in the lower limbs (+ 240 g (+ 2.2%); p =  0.012), without any 
changes in fat mass (Table 1). The increase in leg muscle mass was confirmed by pQCT data, with greater leg 
muscle area observed at 20% (+ 5.6%; p =  0.0006) and 50% (+ 3.8%; p =  0.0009) along the tibia (Table 1).

There were also consistent improvements in bone mass measured by DXA, with bone mineral content increas-
ing in total body (+ 2.3%; p =  0.0001), lumbar spine (+ 5.1%; p =  0.0003), and lower limbs (+ 2.0%; p <  0.0001) 
(Table 1). Similarly, bone mineral density also increased in total body (+ 0.8%; p =  0.013), lumbar spine (+ 1.3%; 
p =  0.003), and lower limbs (+ 2.2%; p <  0.0001) (Table 1).

Functional tests in the Leonardo platform showed some improvement. Participants reduced the time taken 
to perform the chair test by 1.5 seconds (p =  0.0004) and tended to have increased power (+ 0.4 kW; p =  0.060) 
(Table 1). However, there was no evidence of improvements in the jump and balance tests (Table 1).

6-minute walk test.  GMFCS II participants walked 44 meters further during the 6-minute walk test after 
WBVT (Fig. 1), with an average 11% improvement (p =  0.0001). These participants walked faster post-training, 
with sustained reductions in the time taken to reach individual milestones throughout the 6-minute test (Fig. 1).

There was an even greater improvement in the 6-minute walk test among the six GMFCS III participants. They 
walked extra 40 metres on average, equating to a mean improvement of 35% (p <  0.0001), with three participants 
reaching the 150 metres milestone (compared to only one at baseline) (Fig. 2). GMFCS III participants also 
walked faster post-training (Fig. 2).

Health-related quality of life.  Compliance with the CP QOL questionnaire was poor and only 16 car-
egivers and 12 participants completed them both at baseline and post treatment. Note that amongst the 8 
caregiver-participant pairs who answered all questionnaires, caregiver and participant scores were positively and 
highly correlated, with the exception of school well-being scores (data not shown).

Participants did not report any improvements in health-related quality of life (Table 2). However, caregivers 
reported that they observed improvements in school well-being (p =  0.014) and general well-being and partici-
pation (p =  0.002), as well as a considerable decrease in the perceived pain and impact of disability (p <  0.0001) 
(Table 2). As a result, caregivers reported a global improvement in quality of life (p =  0.037; Table 2).

Potential confounders.  There was no evidence that the level of compliance with study protocol affected 
study outcomes. There was also no evidence of sex-specific effects of vibration training, or of any differences in 
outcomes between those who trained at school or in the home environment (data not shown).

Compliance was not affected by gender (males 71% vs females 77%; p =  0.53) or place of training (home 77% 
vs school 69%; p =  0.36). However, increasing age was correlated with poorer compliance with study protocol 
(r =  − 0.36; p =  0.025).
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Adverse events.  There were no recorded adverse events in association with WBVT. However, the parents of 
four participants who were afflicted by constipation reported improvements in bowel function while undergoing 
WBVT.

Discussion
There has been limited research on the effects of WBVT in adolescents with CP. Previous research findings were 
diverse due to the mixed levels of gross motor function of study participants, length of training, heterogeneous aeti-
ology etiology, and the various outcomes investigated. This is the first study to investigate the impact of prolonged 
WBVT on both muscle function and bone health in adolescents and young adults with mild to moderate CP.

The present study showed significant improvements on mobility, as seen by an increase in the distance walked 
during the 6-minute walk test and by improvements on functional tasks (e.g. rising from a chair) following 
WBVT. Notably, those with more significant functional impairment (GMFCS III) had greater improvements on 
mobility compared to those with milder functional impairment (GMFCS II). These findings are similar to the 
results from Ibrahim et al. who observed that 12 weeks of WBVT in 15 children (aged 8–12 years) with spastic 
diplegic CP improved the walking speed during the 6-minute walk test16. Mobility is an important aspect of motor 
performance, being positively associated with health-related quality of life particularly in physical domains17–19. 
Thus, therapies that increase mobility have the potential to greatly improve the quality of life and engagement in 
activities among children and adults with CP. In this study, in addition to the above-described improvements on 
mobility, parents reported improvements in quality of life of participants.

DXA data showed an overall increase in lean mass following WBVT, with improvements in both trunk and 
lower limbs. Moreover, the pQCT data confirmed this increase in muscle mass in study participants as seen by 
greater muscle area at the lower leg. These results are consistent with previous research using combined ther-
apies (including WBVT) that showed increases in muscle mass of approximately 3%9. Our results are impor-
tant, as decreased muscle mass is a considerable problem for children and adolescents with CP, and strategies to 
increase muscle mass in these patients are difficult to implement. In addition, inadequate bone development and 

Baseline Post-training p-value

DXA (n =  39)

Weight (kg) 53.13 ±  2.74 53.94 ±  2.66 0.013

BMI (kg/m2) 21.93 ±  0.79 21.97 ±  0.76 0.79

Fat mass Total (kg) 15.22 ±  1.87 15.23 ±  1.85 0.97

Lean mass

Total (kg) 36.00 ±  1.98 36.77 ±  1.96 0.0003

Trunk (kg) 17.27 ±  0.95 17.68 ±  0.94 0.004

Lower limbs (kg) 10.74 ±  0.65 10.98 ±  0.63 0.012

BMC

Total (g) 2097 ±  120 2145 ±  120 0.0001

Lumbar spine (g) 51.85 ±  3.39 54.51 ±  3.33 0.0003

Lower limbs (g) 642 ±  39 655 ±  38 <0.0001

Femur (g) 25.43 ±  1.45 25.68 ±  1.43 0.20

BMD

Total (g/cm2) 1.060 ±  0.025 1.068 ±  0.024 0.013

Lumbar spine (g/cm2) 1.095 ±  0.042 1.109 ±  0.042 0.003

Lower limbs (g/cm2) 1.048 ±  0.033 1.071 ±  0.033 <0.0001

Femur (g/cm2) 0.954 ±  0.034 0.969 ±  0.035 0.034

pQCT (n =  26)

BMD
Tibia 20% (mg/cm3) 687 ±  34 686 ±  34 0.77

Tibia 50% (mg/cm3) 754 ±  28 755 ±  29 0.82

SSIp
Tibia 20% (mm3) 854 ±  117 863 ±  116 0.11

Tibia 50% (mm3) 1274 ±  178 1280 ±  177 0.83

Muscle area
Leg 20% (mm2) 1442 ±  126 1523 ±  123 0.0006

Leg 50% (mm2) 3538 ±  396 3672 ±  390 0.0009

Functional tests

Chair test 
(n =  37)

Velocity (m/s) 0.56 ±  0.07 0.58 ±  0.07 0.57

Time (s) 8.54 ±  0.82 7.03 ±  0.65 0.0004

Power (kW) 6.18 ±  0.78 6.57 ±  0.83 0.060

Jump test 
(n =  29)

Jump height (m) 0.22 ±  0.02 0.25 ±  0.02 0.33

Maximum power (kW) 1.40 ±  0.12 1.46 ±  0.12 0.16

Balance test 
(n =  35) Both legs area (cm2) 2.55 ±  0.42 2.27 ±  0.34 0.18

Table 1.   Study outcomes among 40 participants with cerebral palsy at baseline and after a 20-week 
training period on the Galileo vibration plate. Data are means ±  standard errors of the mean. P-values refer to 
the changes from baseline, and statistically significant results at p <  0.05 are shown in bold. DXA, whole-body 
dual-energy X-ray absorptiometry; BMC, bone mineral content; BMD, bone mineral density; BMI, body mass 
index; pQCT, peripheral quantitative computed tomography; SSIp, polar stress-strain index. Note that certain 
participants were not able to perform all assessments or the quality of the data gathered (particularly for the 
pQCT) was too low for inclusion in the analyses.
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osteoporosis in children with CP are primarily due to reduced muscle mass and poor mobility, which seem to be 
ameliorated by the improvements observed with WBVT.

Domain Baseline Post-training P-value

Caregivers

Access to services 63 ±  5 67 ±  5 0.14

Communication & physical health 69 ±  2 68 ±  2 0.40

Family health 59 ±  2 60 ±  2 0.67

Feelings about functioning 60 ±  4 60 ±  4 0.99

General well-being and 
participation 66 ±  2 71 ±  2 0.002

Pain and impact of disability 60 ±  6 76 ±  6 <0.0001

School well-being 65 ±  3 70 ±  3 0.014

Social well-being 83 ±  3 84 ±  3 0.58

Global quality of life 66 ±  2 70 ±  2 0.037

Participant

Communication & physical health 78 ±  7 78 ±  7 0.87

Feelings about functioning 55 ±  5 63 ±  5 0.06

General well-being and 
participation 76 ±  8 77 ±  8 0.67

Pain and impact of disability 94 ±  14 87 ±  14 0.10

School well-being 77 ±  9 78 ±  9 0.65

Social well-being 90 ±  4 85 ±  4 0.16

Global quality of life 78 ±  7 78 ±  7 0.88

Table 2.   Health-related quality of life as assessed by caregivers (n = 16) and self-reported by the 
participants (n = 12), according to the Cerebral Palsy Quality of Life questionnaire (CP QOL). Data are 
transformed scores (range 0–100) and are expressed as means ±  standard errors of the mean. For all domains 
higher values mean better outcomes. P-values refer to the changes from baseline, and statistically significant 
results at p <  0.05 are shown in bold.

Figure 1.  Performance of GMFCS II participants in the 6-minute walk test prior to (red) and after (blue) 20 
weeks of whole-body vibration training. Note that 34 participants started the tests, but only 21 and 22 reached 
the 400-metre mark at baseline and post-training, respectively. Data are means ±  standard errors of the mean. 
*p <  0.05, **p <  0.01, and ****p <  0.0001 for baseline vs post-training.

Figure 2.  Performance of GMFCS III participants in the 6-minute walk test prior to (red) and after (blue) 
20 weeks of whole-body vibration training. Six subjects started the tests, and the number of participants 
reaching a particular milestone is shown in the figure. Data are means ±  standard errors of the mean. *p <  0.05 
for baseline vs post-training.
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WBVT provided by the Galileo plate is characterized by seesaw movements that stimulate a moving pattern 
similar to human gait20. These result in the activation of proprioreceptive spinal circuits, thus leading to com-
pensatory rhythmic muscle contractions in the lower limbs and trunk20. Our participants not only displayed 
improvements in muscle mass, but also improvements in bone mineral content and density ranging from 
1 to 5%. The increase in bone mass was probably due to the effect of muscle action on bone during WBVT, 
combined with the effects of the observed improved mobility. Thus, our findings fit well with the mechanostat 
theory, in which mechanical loading (in this case muscle contractions generated by the vibration platform and 
improved mobility) resulted in positive effects on bone, such as an increase in bone mass. Note that our results 
were similar to those observed by Stark et al. after 6 months of combined therapy in a group of 78 children with 
GMFCS I to V, who reported 2.3% and 5.7% increases in total bone mineral density and content, respectively9. 
However, their intervention involved not only WBVT, but also other forms of physiotherapy, resistance train-
ing, and treadmill workout, which made it impossible to identify the specific effects of WBVT. Nonetheless, 
Wren et al. looked at the impact of daily vibration training alone on bone health of children with CP aged 6 to 
12 years, observing improvements in cortical bone area in comparison to a regimen of simply standing on the 
floor8.

A limitation of our study was the uneven number of participants that were able to successfully conclude all the 
necessary assessments. Data for some participants were also of poor quality, as these subjects were simply unable 
to keep their limbs still during scanning. Thus, the decreased data available for analyses likely reduced the power 
of our study to detect treatment effects. This was also the case for the health-related quality of life questionnaires, 
for which completion rates were poor. In addition, although our study involved a relatively homogeneous group 
of patients with CP, there were only six participants with GMFCS III, which limit our ability to extrapolate find-
ings to those with more severe impairments in gross motor function. Lastly, we also did not have a control group. 
However, this is the first study on the effects of WBVT in adolescents with CP, which involved comprehensive 
assessments of muscle function and bone health.

In conclusion, WBVT was associated with increases in muscle mass and bone mass and density, while improv-
ing mobility in adolescents and young adults with mild to moderate cerebral palsy. Importantly, parents also 
perceived improvements in health-related quality of life with WBVT among study participants. Nonetheless, it is 
still unclear whether the observed positive effects persist after WBVT ceases. Thus, the efficacy of WBVT for the 
long-term management of cerebral palsy requires further investigation in larger and longer trials.
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